## Virtual Learning

 Physics
## Centripetal Force

May 6, 2020

## Physics

## Centripetal Force: May 6,2020

## Objective/Learning Target:

Students will examine the concept of centripetal force and use it to solve some basic problems.

## Quick Review \#1

The speedometer in a car is driven by a cable connected to the shaft that turns the car's wheels. Will speedometer readings be more or less than actual speed when the car's wheels are replaced with smaller
 ones?

## Quick Review \#2

Keeping in mind the concept from the previous question, a taxi driver wishes to increase his fares by adjusting the size of his tires. Should he change to larger tires or smaller tires?


## Quick Review Answers

1. The speedometer will read more; the rims of smaller wheels don't move as far per rotation, so a car with smaller wheels goes slower than the speedometer shows.
2. Smaller wheels; speedometer and odometer readings will be higher.


## Centripetal Force

## Link:Centripetal Force



## Directions:

- Read through Centripetal Force.
- Work through any examples on a separate piece of paper before you scroll down to the solution.
- On a separate piece of paper complete the practice problems on the following slides.
- Check your answers.
- For additional practice check out the conceptual questions and the problems and exercises in the table of contents for the online text linked above.


## Practice Problem \#1

A 2-kg iron weight is swung in a horizontal circular path at the end of a $1.6-\mathrm{m}$ length of rope. Assume the rope is very nearly horizontal and the weight's speed is $10 \mathrm{~m} / \mathrm{s}$. Calculate the tension in the rope.


## Practice Problem \#1 Answer

## $F_{c}=\underline{m v}^{2}$ <br> r <br> $$
=2.0 \mathrm{~kg} \mathrm{X}(10.0 \mathrm{~m} / \mathrm{s})^{2}
$$ <br> $$
1.6 \text { m }
$$ <br> $$
=125 \mathrm{~N}
$$ <br> 

## Practice Problem \#2

A 70-kg person sits on the edge of a horizontal rotating platform 2 m from the center of the platform and has a tangential speed of $3 \mathrm{~m} / \mathrm{s}$. Calculate the force of friction that keeps the person in place.


Practice Problem \#2 Answer

$$
\begin{aligned}
\mathrm{F}_{\mathrm{c}} & =\frac{\mathrm{mv}}{\mathrm{r}} \\
& =\frac{70 \mathrm{~kg} \times(3 \mathrm{~m} / \mathrm{s})^{2}}{2 \mathrm{~m}} \\
& =315 \mathrm{~N}
\end{aligned}
$$

## Practice Problem \#3

Assume the coefficient of friction between rubber tennis shoes and the wooden platform in question \#2 is (0.8). What is the maximum tangential speed the 70 kg rider could experience before sliding off the ride? Assume they are still sitting 2 m from the center with their shoes flat and trying to stop the slide.


## Practice Problem \#3 Answer

Friction supplies the centripetal force that holds the rider on the ride.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{n}}=\mu \mathrm{mg} \\
& 0.8 \times 70 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=548.8 \mathrm{~N}
\end{aligned}
$$



So the $\mathrm{F}_{\mathrm{c}}=548.8 \mathrm{~N}$

$$
\begin{aligned}
& F_{c}=\underline{m v^{2}} \quad \text { rearrange for } v \quad v=\sqrt{ }\left(F_{\mathrm{c}} \times r / m\right) \\
& =\sqrt{ }(548.8 \mathrm{~N} \times 2 \mathrm{~m} / 70 \mathrm{~kg}) \\
& =3.96 \mathrm{~m} / \mathrm{s} \rightarrow \text { sig fig } 4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## Additional Practice

For additional practice check out the conceptual questions and the problems and exercises in the table of contents from the online text linked above.

